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We use the first-passage-time formulation by Torquato, Kim and Cule EJ. Appl. Phys., Vol. 

85, pp. 1560--1571 (1999)1, which makes use of the first-passage region in association with the 

diffusion tracer's Brownian movement, and develop a new efficient Brownian motion simulation 

method to compute the effective conductivity of digitized composite media. By using the new 

method, one can remarkably enhance the speed of the Brownian walkers sampling the medium 

and thus reduce the computation time. In the new method, we specifically choose the first- 

passage regions such that they coincide with two, four, or eight digitizing units according to the 

dimensionality of  the composite medium and the local configurations around the Brownian 

walkers. We first obtain explicit solutions for the relevant first-passage-time equations in two 

and three-dimensions. We then apply the new method to solve the illustrative benchmark 

problem of estimating the effective conductivities of the checkerboard-shaped composite media, 

for both periodic and random configurations. Simulation results show that the new method can 

reduce the computation time about by an order of magnitude. 

Key  Words :Digi t ized  Mediam, Effective Conductivity, Brownian Motion Simulation, First 
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1. Introduct ion  

Development of the modern digital technique 

makes it advantageous and convenient to digitize 

most geometrical objects. Estimation of the effec- 

tive conductivity of a composite material con- 

sisting of  more than one phase is an application 

in which the digitization of the medium is found 

useful. Except [br a few examples fabricated for 

special purposes, most natural and artificial com- 

posite materials have complex geometrical con- 

figurations. Clearly, it is easier to deal with the 

digitized image of a composite medium than its 

actual complex configuration. There exist a vari- 

* E-mail : ickim @ kunsan.ac.kr 
TEL : +82-63-469-4720; FAX : +82 63-469-4726 
School of Mechanical Engineering, Kunsan National 
University, Miryong Dong 68, Kunsan Chonbuk 573 
701, Korea. (Manuscript Received September 14, 2002; 
Revised January 17, 2003) 

Copyright (C) 2003 NuriMedia Co., Ltd. 

ety of techniques to obtain two and three-dim- 

ensional digitized images of composite materi- 

als, including transmission electron microscopy, ~ 

scanning tunneling electron microscopy, 2 syn- 

chrotron based tomography 3 and confocal micros- 

copy. 4 For a digitized image of a composite me- 

dium given by any of such techniques, a com- 

putation method is required to process this image 

and estimate the desired characteristic property. 

In an estimation of diffusive transport properties, 

such as thermal conductivities, diffusion coeffi- 

cients, and magnetic permeabilities, a numerical 

method based on Brownian motion simulation 

has been successfully used for many different 

classes of composite media, s In this method, im- 

aginary random (or Brownian) walkers are allow- 

ed to freely move inside the composite medium. 

At each step, their movements and speeds are 

influenced by the local phases and geometries. 

The effective conductivity o'e of a d-dimensional  

composite medium is related to random walkers" 
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overall mean square displacement ( R 2 ( t ) )  as 

follows : 

( R 2 ( t ) )  ~-~ (I) 
ae = 2 d ~  

where t is the time and the angular bracket 

denotes the ensemble average. 

Several different methods implementing ran- 

dom walkers have been developed for different 

applications in the computational physics. For 

the estimation of the effective conductivity of 

composite media, a method is preferred in which 

random walkers move around the medium as last 

as possible since random walkers' movements con- 

sume major portion of the computational efforts 

in most computer simulations. It is well esta- 

blished that, among different random walk me- 

thods, the so-called first-passage-time technique 

is the most efficient in the estimation of the effec- 

tive conductivity of composite media. Compared 

to the conventional random walk method that 

simulates the detailed zig-zag motions of walkers, 

the first-passage-time method has been proved 

to dramatically reduce the computation timeP 

Though the first passage-time Brownian motion 

simulation method is generally applicable for any 

complex heterogeneous configuration, it can be 

specially tailored for a configuration consisting of 

geometrically identical elements such as square 

pixels and cubic voxels in digitized two- and 

three-dimensional media. Such a tailored method 

for digitized media was recently developed by 

Torquato et al. 7 They used "first-passage squares" 

("first-passage cubes") to take advantage of the 

replicating geometry and thus speed up random 

walkers in a composite medium consisting of 

squares (cubes). It is noteworthy that the lattice 

walk method is inappropriate for the simulation 

of the conduction in a digitized medium although 

it may appear natural to use this method. In the 

lattice walk method, a random walker moves 

from the center of a square to one of four (eight) 

centers of adjacent squares (cubes). This way of 

moving walkers is simple, perhaps the simplest, 

and computationally easy. However, the lattice 

walk method cannot properly capture the conduc- 

tive transport through corners and thus yields 

Copyright (C) 2003 NuriMedia Co., Ltd. 

inexact conductivities when the conduction thr- 

ough corners becomes important. 8 As an illustra- 

tive benchmark problem, Torquato et al. 7 com- 

puted the effective conductivity of a checker- 

board-type composite medium in which the black 

and white squares denote phases of different con- 

ductivities. Indeed, the checkerboard problem is a 

severe benchmark test when the contrast between 

conductivities of different phases becomes intense. 

When one phase, say black, is more conducting 

than the other phase, say white, the conductive 

transport through diagonally touching black sq- 

uares becomes more important as the conductivity 

ratio becomes larger. However, in a lattice ran- 

dom walk method or in a conventional numerical 

analysis such as a finite differences method, this 

transport through corner could not be properly 

simulated. 7'8 To the author's knowledge, the first- 

passage-time method by Torquato et al. 7 is the 

only random walk method that can exactly cap- 

ture the conductive transport through corners. 

In this paper, we present a new first-passage 

time method that improves over Torquato's algo- 

rithm. The new method incorporates the concept 

of imaginary "first-passage-bisquare" (first pas- 

sage-bicubes) instead of Torquato's "first-pas- 

sage square" (first passage-cubes). Compared to 

Torquato's method, it reduces the computation 

time about by an order of magnitude while ex- 

actly capturing the conductive transport through 

corners. As an illustrative example, we use the 

new method to calculate again the effective con- 

ductivities of the checkerboard-type composite 

media, for both periodic and random checker- 

boards. We compare the calculation results with 

ones obtained by using Torquato's first-passage- 

square method. 
The remainder of this article is organized as 

follows. In Sec. 2, we present the theoretical back- 

ground for a general first-passage-time simula- 

tion. In Sec. 3, we specialize first-passage time 

equations for two- and three-dimensional digi- 

tized media and solve for relevant statistical quan- 

tities using first passage-bisquares (or first-pas- 

sage-bicubes). In Sec. 4, we describe the details 

of the first passage-time simulation technique. 

In Sec. 5, we apply the algorithm to obtain the 
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effective conductivities of the checkerboard-type 

composite media. Summary is given in Sec. 6. 

2. First-Passage Time Method 

We summarize the general first-passage time 

algorithm formulated by Torquato et al. 7 They 

introduced the canonical probabili ty function P 

(r, rn, t) as a fundamental construct and ex- 

pressed relevant statistical quantities in terms of 

this canonical function. We present the formula- 

tion for the first-passage movement of a Brow- 

nian (or random) walker in homogeneous and 

heterogeneous regions separately. 

2.1 Random wa lk  in a homogeneous  s i tua-  

tion 
Consider a random walker diffusing in a d -  

dimensional homogeneous medium of conduc- 

tivity 0". Let us draw a first-passage region Q 

around the walker and denote its bounding sur- 

face by a Q. Let r be a position inside Q and 

r8 be a specific point on aQ.  The canonical 

function P ( r ,  rB, t) is defined as the probabil i ty 

associated with the walker hitting the surface a Q 

in the vicinity of rn for the first time at time t 

when the walker starts at r.  This canonical prob- 

ability function is given by the solution of the 

transient diffusion equation 

o'V2p(r,  rs, t) 

_ 3 p ( r ,  rs ,  t) r i n  Q t > 0  (2) 
3t ' ' 

subject to the following initial and boundary 

conditions : 

P ( r ,  rB, t=0)---=0, r in Q (3) 

P ( r ,  r , ,  t ) = ~ ( r - r , ) ,  r on OQ, t > 0  (4) 

Most relevant first-passage-time quantities are 

expressed in terms of P ( r ,  r , ,  t ) .  Fol lowing is 
the formulation for the quantities needed for the 

computer simulation. 

First, we need to find the mean hitting time r 

(r) ,  that is defined as the average time taken by 

the random walker to hit the surface o ~Q for the 

first time when it starts from r. This quantity is 
given by 

v ( r ) = f Q f ~ t  a P ( r ,  r . ,  t) 3t dtdr~ (5) 

The mean hitting time r can be alternatively ob- 

tained by the solution of the steady-state diffusion 

equation 

aV2v(r) : - - I ,  r in Q (6) 

subject to the absorbing boundary condition 

r ( r )  =0 ,  r on OQ (7) 

Next, we need the probabili ty density function 

w(r ,  rB) that is defined as the probabili ty as- 

sociated with hitting the vicinity of a particular 

position rB on the surface 3Q for the first time 

when the walker starts at r. This quantity is 

obtained by integrating the time derivative of the 

canonical probabili ty density function, OP(r, rB, 
t ) /Ot ,  over all times, i.e., 

3P  
w(r ,  r s ) = f 0  8t dt  (s) 

= P ( r ,  rs,  t - - co )  

This expression in conjunction with Eqs. (2) - (4) 

gives the Laplace equation 

V2w(r,  rB)=0 ,  r in Q (9) 

of which the boundary condition is given by 

w(r ,  r B ) : $ ( r - - r B ) ,  r on 3Q (10) 

Finally, another important quantity is the jum- 

ping probabili ty p(r)  which gives the probabili ty 

that a random walker starting at r lands on a 

certain portion of the first-passage surface OQ0 
for the first time. This is obtained by integrating 

the probabili ty density function w( r ,  rs) over 

boundary points on O Q 0, i.e., 

p ( r )  =fo~,,w (r, rs) drB (11) 

Using this expression and relations (9), (10), one 

can easily derive the boundary value problem for 
the jumping probabili ty distribution p ( r ) :  

V2p(r) =0,  r in Q (12) 

of which the boundary condition is given by 

l , r  on af2o 
p( r )  = 0, r not on Of 20 (13) 

Copyright (C) 2003 NuriMedia Co., Ltd. 
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2.2 Random walk in a heterogeneous situa- 

tion 

Consider a d-dimensional  two-phase medium 

of which the phase conductivities are ~ and ~72. 

Let a random walker diffuse in the vicinity of the 

two-phase interface. Let us draw a first-passage 

region f2 around the walker with its bounding 

surface a~2. Let f2i denote the portion of f2 

containing phase i ( = 1 ,  2) and c~Qi denote the 

corresponding surface of f2 i. Interface surface is 

denoted by /1. 

The mean hitting time, r ( r ) ,  satisfies the stea- 

dy-state diffusion equation, 

a~VZr(r) = - 1 ,  r in f2i (14) 

subject to the absorbing boundary condition 

r(r)  =0,  r on 3f2 (15) 

and the interlace conditions 

rll=r]2, r on F 16) 

3r 1--~z 3r 2' c3nl al 3n~ r on ~" 17) 

where ni is the unit outward normal from region 

~21 and [i means that the approach to F f rom the 

region f2 i. 

The probability density function w (r, re) sat- 

isfies the Laplace equation 

VZw(r, rB)=0,  r in f2 18) 

subject to the boundary condition 

w(r,  r B ) = 8 ( r - - r s ) ,  r on 8f2 19) 

and the interface conditions 

w I~=u, 12, r on F (20) 

8W 1 O2 8W 2' 37"/1 Ch 3nl r on F (21) 

Finally, let us define the probability 20~(r) [P2 

(r) ] to be the probability that the'random walk- 

el, initially at r, hits the first passage surface 3 f21 

[c~z]  for the first time. The probability 201 is then 

obtained by integrating the above probability 

density function w(r,  r , )  over the boundary 

points on partial 0f2~, i.e., 

(r) = ~ w  (r, rB) drB (22) 201 

Using this expression and the relations Eq. (18)- 

(21), one can easily derive the boundary value 

Copyri9ht (C) 2003 NuriMeclia Co., Ltd. 

problem for the jumping probability p: ( r ) :  

Vzp, ( r ) = 0 ,  r in f2 (23) 

subject to the boundary condition 

1, r on 3~1  
Pl(r) = 0, r on 3f22 (24) 

and the interface conditions 

pxll=pxl2, r on F (25) 

c~201 = ~  c~201 
3nl __ 3nl z' r on F (26) 

Once 201(r) is known, the jumping probability ibz 

(r) for a point on the surface containing phase 2, 

c?Q2, is simply given by the trivial relation 

h ( r )  =1 201 (r) (27) 

3. F i r s t - P a s s a g e  T i m e  E q u a t i o n s  for  

D i g i t i z e d  M e d i a  

In this section, we solve the first-passage-time 

equations formulated in Sec. 2, to obtain the 

first-passage time quantities, r, w and p, for ho- 

mogeneous and heterogeneous digitized media. 

In two- and three-dimensional applications, the 

medium is consisted of square pixels and cubic 

voxels, respectively. We consider the two- and 

three-dimensional problems separately. We solve 

for the first passage region that is consisted of 

two adjacent squares (cubes). Choice of this 

first-passage region is one distinctive feature of 

the new simulation method, in contrast to the 

method by Torquato et al. 7 The other distinction 

is that, at each step, a random walker is posi- 

tioned at a pixel (voxel) boundary, rather than an 

arbitrary location inside the first-passage region. 

We also present the solutions for the first-passage 

region consisted of four squares (eight cubes). 

3.1 Two-dimensional digitized media 

3.1.1 Random walk in a homogeneous situa- 

tion 

Let us consider the first-passage region that is 

consisted of two horizontally adjacent squares. 

For a first-passage region consisting of two ver- 

tically adjacent squares, the following results can 
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r (O,y)  

-L 0 

First-passage-region consisted 

I r (x,~,y~,) 
/ 

L × 

of two neigh- 
boring unit squares of area LE A Brownian 
walker diffuses from r at the centerline to 
some point rB on the boundary 

be used by simply interchanging x and y coor- 

dinates. Each square has an area of L 2 and the 

unit  conductivi ty ( o = 1 ) .  The origin is taken to 

be the bottom location in the centerline, as de- 

picted in Fig. 1. Let a random walker start to 

diffuse from an arbitrary location r = ( x ,  y) in 

the first-passage region, or the "first-passage bis- 

quare.'" Eventually,  it lands at some point r8 = 

(xs, Ys) in the outer boundary  of this first-pas- 

sage bisquare for the first time. The mean hitting 

time r ( r )  taken ['or the displacement is easily 

found by solving the diffusion problem Equat ion 

(6) and (7). That  is, 

L'~ 1 I ~ (' y/-~ r,r=rl.r, v =~ / 2 - \ L /  
(28) 

16 ~ ',-1 '~-~ cosh[',2n+ll~/L] c°sS(2n+li'w/L- 3I 
+F ol2 +l  . 

For the implementat ion of the computer  si- 

mulat ion,  we need r only for the centerline at 

r =  (0, y ) .  If we define, for a homogeneous first- 

passage bisquare, 

ru(y)  = r ( 0 ,  y) (29) 

then rH(y) is obtained as 

L"[I ~l' v ~" 
rn 'Yl=~l  2 - -  t~- } 

(30) +16& -1 'n+L I l 
Z 3 n~--'l t i n + I T  c0sh[(2n+llz] c0s[12n+13&v,'L] j 

Figure 2 shows the graph of rH(y) as a function 
of y. 

Copyright (g) 2003 NuriMedia Go., Ltd. 

rn (y) 
L 

,; ,?,~J:- 2 I 
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Fig. 2 Mean hitting time Z'H(y) for a Brownian 
walker starting from r =(0 ,  y) to arrive at 
some point on the first pasage bisquare of 
area 2L z 

The probabil i ty density function w( r ,  rB) is 

obtained by solving Eqs. (9) and (10). Let us 

define, for a homogeneous first-passage bisquare, 

w u ( y ,  x8, Y s ) = w ( 0 ,  y ,  .'rs, Ys) (31) 

and define further, for brevity, 

u'm(y, x s ) = w , ( y ,  xB, O)=w(O, y, x~, 0) (32) 

u,m(y, 3'8)=wuly. ++-L, 3'8)=w(0, y, +-L, ys) (33) 

win(y, x8)=WH(y, Xs, L ) = w ( 0 ,  y, xB, L) (34) 

Note that Will, Wn2, and WHa denote the prob- 

ability densities for the cases that a random 

walker reaches at the bottom, the side, and top 

boundaries,  respectively, of  the first-passage bis- 

quare as in Fig. 1. The probabil i ty densities, tVnl, 

WHZ, WUa, are obtained as, for a position (xs, Y8) 
at the boundary  one, 

I ~ . 7 J  sinhn,7:i: !351 
wH b', x~' = ~ ; t  sin (;~') sin ['~'r( 1+ r ' '  ]sinh),~2:l-v,L 1 

v & sinhi;~!s ncn~,L:,s n ;~v~,L~ 
u'~(v, vel =5-2S -.i  . . . . . . .  (36) 

" " " L~=L S i l l h [ 2 ~ l ~ ]  
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Fig. 3 Probability density wu, for a Brownian wal- 

ker starting from r =  (0, y) to first hit r ~ =  

(x~, L) ,  for y/L=0.25.0 .5  and 0.75 

I 2,1F 

I ,;0~ - F 

wH? {Y.YB} • 

• • • •  • •A•  • 
• V• • •  • • •& • 

• VVA • •VA• • 

' f~v• Vv•t~ 

20liE : • • •  

• • " # 1  

i / 

000E ~ f l  
0 0 2  C, 4 o 6 ', ~ 

Y /k 

Fig. 4 Probability density WHZ for a Brownian wal- 

ker starting from r = ( 0 ,  y) to first hit r~ = 

(L, yn), for y/L=0.25,  0.5 and 0.75 

I & . tnz~ • Inn[ xn'l]smh(nnY/2L) 
u,m(y, xe', = ~ s m  / 2 )  sm L 2 /  ' L / ]  s~(mr/2) (37) ....... 

respectively. The  g raphs  of  tom, wnz, wna for a 

few values of  y are d r awn  in Figs. 3-5. , :0,~ 

We also need the p robab i l i t y  p tha t  a r a n d o m  

walker  land for the first t ime at a b o u n d a r y  sec- 
6 ,),OE 

t ion  0Sq0. This  p robab i l i t y  is given by the solu- 

t ion of  the Laplace  p rob lem (12),  (13) but  it c a n  wl,~{Y,Xe) 

be a l ternat ively  ob ta ined  by in tegra t ing  Eqs. (35) - ~.~,E 

(37) over  a ~ 0 .  For  example,  if oqf20 is taken to 

be the r ight  ha l f  b o u n d a r y  (x~>_O), then .b is 

found to be ~=,,= 

p =  foLWm(y,  xB) dxB+ fot'Wuz(y, yB) dYB 
(38) 

+ win(y, xs) 

which unders ta tes  tha t  the r a n d o m  walker  starts 

at the center l ine  of  the symmetr ic  bisquare .  

Dur ing  its diffusion,  a r a n d o m  walker  cou ld  

h a p p e n  to land exactly at or  very close to a corner  Fig. 5 

of  a square  pixel. A f i rs t -passage  b i square  move-  

ment  is i n a p p r o p r i a t e  for a r a n d o m  walker  in 

such c i rcumstance ,  since the walker  c a n n o t  move  

further.  (The  walker  con t inues  to stay at a corner  

Copyright (C) 2003 NuriMedia Co., Ltd. 
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• • • •  ] 

1 
qdt  k ~,a,a, 'a" I 

, ~ l t ~ l d  I ~ 1 1 ~ ' ~ -  _ ~,; 

xa/L 

Probability density wna for a Brownian wal- 

ker starting from r = (0, y) to first hit r B =  

(xs, 0), for y/L=0.25,  0.5 and 0.75 

spend ing  no time.) In order  to let such a r a n d o m  
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0-(2) 

,y 

L 

0.(I1 Z/'" 
O L x 

0.(3) 6(.t) 

Fig. 6 First-passage-square of area 4L z. A Bro- 
wnian walker diffuses from the center to some 
point rn on the boundary 

For a random walker arriving at r B =  (xn. +-L) 

in the top or bottom boundary,  wH is obtained as 

w .  (xB, + L) 
_ ! ~ s in(nz /Z)s inEnrc/Z(xB/L+_l)]  (43) 

2L .=1 c o s h ( n z / 2 )  

The probabil i ty  p that the random walker land 

for the first time at a boundary  section o~Q0 can 

be obtained by integrating Eq. (42) or (43) over 

o~f20. For example, the probabil i ty  to land at any 

point  along the side x = L ,  is given by 

" I 
P= f L w H  (L, YB) d y ~ = ~  (44) 

This result confirms that the random walker lands 

at each side with equal probabi l i ty  of 1/4. 

walker move further, we construct a first-passage 

region consisting of  four squares encompassing 

the walker at the corner, instead of two squares. 

Consider  a random walker exactly at or very close 

to the origin that is taken at the center of four 

squares, as shown in Fig. 6. Each of four squares 

has an area of L z and the unit  conductivity. A 

random walker diffusing from the center will 

eventually arrive at an outer boundary  of a region 

of four squares. The mean hitting time r and the 

probabi l i ty  density function w in association with 

this displacement are again obtained as solutions 

of Eqs. (6) and (7) and Eqs. (9) and (10), respec- 

tively. Let us define, for a homogeneous first- 

passage square having the unit  conductivity, 

rH= Z'(0, 0) (39) 

and 

wn (XB, Yn)= w (0, 0, xs, Ys) (40) 

The mean hitting time ru is obtained,  for the 

homogenous  first-passage square in Fig. 6, as 

rn -~ 0.295L 2 (41 ) 

For  a random walker arriving at r s = ( - + - L ,  yB) 

in the left or right boundary  side, wn is obtained 

a s  

w~ ( -+ L,  ys) 

_ 1 if-]. s i n ( n z / 2 ) s i n [ n z r / 2 ( y J L + - l ) ]  (42) 
2L ,=1 cosh ( n z / 2 )  

3.1.2 Random walk in a heterogeneous situ- 

ation 

Consider  the first-passage region consisted of 

two horizontal ly adjacent squares of different con- 

ductivities. For a first-passage region consisting 

of two vertically adjacent squares, the following 

results can be used by simply interchanging x and 

y coordinates. Each square has an area of L z. 

The origin is again taken to be the bottom loca- 

tion in the centerline, as in Fig. 1. Let 0.~ and 0"2 

be the conductivities of  squares on the right (x--> 

0) and left (x<__0) sides, respectively. A random 

walker starts to diffuse from an arbitrary position 

r = (0, y) in the centerline and arrives at some 

point  rB = (xs, YB) in the outer boundary  of the 

first-passage region for the first time. The mean 

hitting time r ( r )  taken for this displacement is 

given by the solution of  the boundary  value pro- 

blem Eq. (14) (17). One can easily solve this pro- 

blem and find that 

2 
r =  o'1+0.z rn (45) 

where rH denotes the homogeneous solution given 

by Eq. (30) for a unit  conductivity. 

The probabil i ty  density function w(O, y, xB, 
YB) in association with the walker 's displacement 

is given by the solution of the boundary  value 

problem (18)- (21) .  This problem can be easily 

solved and its solution is obtained as 

Copyright (C) 2003 NuriMedia Co., Ltd. 
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[ 261 W :" 
= /  6~+a2 uV.y, xB, YB), xB>-O 

w(0, YB) Y, xB, 
[ wu(y, y.), x.<0 

(46) 

where wu is defined in Eq. (31) and its explicit 

expression is given as win, wn2, or wm in Eqs. 

(35) (37), depending on the position ofrB. Note 

that wu is obtained as w,/1 for r e =  (x~, 0), wm 

for r ~ = ( + L ,  ys), or wm for rB=(XB, L).  

The probability p~ that a random walker land 

for the first time at any point along the right half 

boundary a ~ t can be obtained by integrating Eq. 

(46) with the Eqs. (35)-(37) over ~ Q l, i.e., 

P~=f0 Lw(0, y, xB, O) dxB + fo 'w(O, y, L, yB)dye+ f'w(0, y, x,, L) dxB 
(47) 

It immediately follows that the probability P2 for 

a random walker to first hit OQ2 is obtained as 

0.2 (48) 
P2= 1 - - p l :  0.1+0.2 

This result implies that the probability Pi landing 

at 8 • ~ is proportional to the local conductivity 0.i 

of the corresponding square. 

If a random walker is exactly at or very close to 

a corner of a square in the course of diffusion, the 

walker carries out its first-passage displacement 

by use of a first-passage square (or four squares) 

instead of a first-passage bisquare. One constructs 

a first-passage region such that it includes four 

squares around the random walker, as shown in 

Fig. 6. Let 0 . ' ) ( i=1 ,  2, 3, 4) be the conductivity 

of the square at the i-th quadrant. The random 

walker starts from the center of the [Our-square 

region and eventually lands at the outer boundary 

of this first-passage region for the first time. The 

mean hitting time r for this first-passage dis- 

placement is again given by the solution of the 

boundary value problem, Eqs. (14)- (17) and the 

solution is found to be 

1 0.295L 2 
r =  _rH ~ (49) 

G 6 

where 
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1 4 . 6 = ~ 0 .  "~ (50) 

and z-u is the mean hitting time for the random 

walker associated with the homogeneous first- 

passage region of the unit conductivity, as given 

in Eq. (41). The jumping probability density 

function w(r,  rs) associated with this first-pas- 

sage displacement is given by the solution of 

the boundary value problem Eqs. (18) - (21). Let 

0Q ~f) denote the section of the boundary o~Q 

belonging in i-th quadrant. For a random walker 

arriving at the boundary Of~ (i), the probability 

density is obtained as 

0.(i) 
w(r,  r e ) =  wu( r , ) ,  re on 3f2 ~i) (51) 

6 

where wn is the probability density associated 

with the homogeneous first-passage region, as 

given in Eqs. (42) and (43). The probability p 

that the random walker land for the first time at 

any point along the specific boundary side is 

obtained by integrating Eq. (50) with the Eqs. 

(42), (43). For example, the probability to land 

at any point along the side x = L ,  is given by 

L 0.(1) + 0-(4) 
p=f_Lw(O,  O, L, y , ) dyB- -  86 (52) 

which confirms again that p is proportional to 

the local conductivity 0.(o. 

3.2 Three-dimensional  digitized media 

3.2.1 Random walk in a homogeneous situa- 

tion 

Consider the first passage region that is con- 

sisted of two neighboring cubes in z direction. 

The first passage region consisting of two neigh- 

boring cubes in x or y-directions can be treated 

similarly. Each cube has a volume of L 3. Let 

assume the cube has the unit conductivity, 0.= 1. 

The origin is taken to be the corner location in 

the center-cutting plane between two cubes such 

that the center cutting plane coincide with the 

plane in which z--0,  as depicted in Fig. 7. Let the 

random walker start to diffuse from the location 

r =  (x, y, 0). Using the separation of variables 

technique, one can easily solve the boundary 
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T 
?. 

x 

Fig. 7 First-passage-region consisted of  two neigh- 

boring unit cubes of  volume L ~. A Brownian 

walker diffuses from r at the center cutting 

plane to some point rn on the boundary 

va lue  p rob l em,  Eqs.  (6) ,  (7) to ob t a in  the mean  

h i t t ing  t ime r ( r ) .  The  m e a n  hi t t ing t ime r for a 

r a n d o m  walk  s tar t ing f rom a po in t  r =  (x,  y,  0) 

on the c e n t e r - c u t t i n g  p lane  is ob t a ined  as 

r(x, y, O)= 6 T~(x, y, O) + T~(x, y, O) + T~(x, y, O) 
(53) 

3 x 1 ~ y 1 z 3 

where  

o 3 ~ ~ (-II cosh[kt(2x/L+l~l 
T~(x,Y.O=,52~2~ , a, ,, 

2X ==on=olin+l:2 ,re+l, '= cosh'&) (54) 

3 ® " I I) "+"< c0sh[kd.2y/L-- I; 
T.~lx. v, O ) : - ~  2 X - 

" ztc ,=o,=o (m+l,,'2)a(n+l/2) coshikd (55) 

T~(x. y, o: 

= " ~ V , - I  ~+n+l : I 
2,,d~o,%' ' L m+l/2) (n+ /21 (re+l/2) (n+l/2)~J (56) 

I 2r ; 1 3v+ 
k . g J i - g Jc0sh;2kd 

1 2 i )2]a/2 
k ~ = [ (  m + ~ )  + (  n + ~  ~r (57) 

T h e  j u m p i n g  p robab i l i t y  dens i ty  func t ion  w ( r ,  

r~) is ob ta ined  by so lv ing  Eqs. (9) and (10).  Let 

us define,  for a h o m o g e n e o u s  f i r s t -passage  bi- 

cube,  

urn(x, y, xB, y~. z~ )=w(x ,  y, 0. x~, 3'~, z~) (58) 
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and def ine  further ,  for brevi ty,  

u,m(x ,  y, xB, y B ) = w . ( x ,  y. x~. yB. + L )  
(59) 

= w ( x ,  y, O, xB, yB, .+- L)  

w in (x ,  y, yB, z s ) = w u ( x ,  y, O, ys, z~) 
(60) 

= w ( x ,  y, O, O, ys, z~) 

wna(x, y, xB, x n ) = w u ( x ,  y, x~, O, zB) 
(61) 

= w (x ,  y ,  0, x~,  0, zB) 

win(x ,  y,  yn, z n ) = w n ( x ,  y, L ,  yB, zn) 
(62) 

= w ( x ,  y, O, L ,  ys, zB) 

WHs(X, y, x~, z B ) = w u ( x ,  y, xs, L ,  zB) 
(63) 

= w (x, y. O, xs, L ,  zs) 

T h e n  Wn'S are ob ta ined  as, for  a pos i t ion  (xB, 
yB, zs) at the b o u n d a r y  3 Q  o f  the f i r s t -passage  

b icube ,  

4 ~,~ . / msx . ' m~8 • n~" sin n,~' (V) 
L •=ln=l \ L, , 

sinh(k21 (64) 

si~q&) 

,:- ) 
s nh[k~q-x/b]  (65) 

x 
sinh{&~ 

2 & & ,  / m ~ t  . /mz~B/ F(n+l,/2}zB] 
u'm¢'x. Y. xB, &= ,~ ~ ~smlT / s ln~  ~ 1  cos 

L',=l,:o , L ,  . L ! ~ J '  

;,: sinhlk3* - . '.L!] (66) 

sinh(k3) 

2 LL Im~'l :nl~:BI [In+l'2t,zz~] 
a';,x,Y. YB. as)=,,2.~sm/ r / s l n ~  F /cos[ L 

L'm=l~=O ', L ~ ' L ' 

(67) 
sinh ( k~x / L ) 

× 

sinh!k: 

2 ~ .  'mza'/ , /m~X /'n.l,2:r~B] 
u:~ :x, v..rs, zB, = ,~ L Lsm ! T / s m  / ~ ) cos I ~ /  

L'n;=l~=!, \ L / , L L L J 

(68) 
si~h!M.'/ L) 

X 
sinh: &l 

where  k2 and ka are def ined as 

k2 : (/~.12 + n2) 1/2~. (69) 

ka = [ m 2 + ( n + I/2) 2] 1:27g (70) 

respect ively.  

T h e  p robab i l i t y  p that  a r a n d o m  walke r  land 

for the first t ime at a b o u n d a r y  sect ion c~Q0 is 

ob ta ined  by i n t e g r a t i n g E q s .  (64) (68) o v e r o ~ 0 .  
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For example, if c~Q0 is taken as the right half  

boundary (z.~>_O), then p is obtained as 

p:  lru~ ix. v..r~, vB', d.rdvB+ te~. x, v, vB, v~)dvdz~ 

I'S' - w,~{x, y, x~, zB)dx~dzB= I~, 

which understates that the random walker starts 

at the center-cut t ing plane of  the symmetric 

bicube. 

In case that a random walker happens to land 

exactly at or very close to a corner  o f  a cubic 

voxel, the walker moves further by use of  a first 

passage cube, rather than a first-passage bicube. 

One constructs a first-passage region consisting 

of  eight cubes encompassing the random walker  

at the corner, instead of  two cubes. Consider  a 

random walker exactly at or  very close to the 

origin that is taken at the center of  eight cubes, as 

shown in Fig. 8. Each of  eight cubes has a vo lume 

of L a and the unit conductivity.  A random walker  

diffusing from the center will eventually arrive at 

an outer  boundary  of  the first-passage region of  

eight cubes. The mean hitting time r and the 

probabil i ty  density function w in association with 

this displacement are obtained as solutions of  

Eqs. (6), (7) and Eqs. (9), (10), respectively. Let 

us define, for a homogeneous  first passage cube 

having the unit conductivity,  

..... ili  ii iiiill 

Fig. 8 First-passage-cube of volume 8L 3. A Bro- 
wnian walker diffuses from the center to some 

point re on the boundary 

rH= r(0,  0) (72) 

and 

Wn (xe ,  .V,~, z e ) =  w (0, 0, 0, xe, Ys, zn) (73) 

The mean hitting time rn is obtained,  for the 

homogenous  f i rs t -passage-cube in Fig. 8, as 

zn -~ 0.22485L z (74) 

The expressions for WH can be also obtained.  For  

a random walker  arriving at r e =  (4 -L ,  y s ,  zB) in 

the x - b o u n d a r y  surface, Wn is obtained as 

l ~sinl~nr/2)sin[mx,'21yn/L+-I@in(n~r/'2)sin[nz/2',zn/L±lt] (75) 
=STY"" .L" ~=1~=I C08II t, R2,' ~,' 

For  a random walker arr iving at r e : ( x s ,  - L ,  

z~) in the y - b o u n d a r y  surface, w n  is obtained as 

wu(x~, +-L, zB) 
I ,9?sm(m~r,-,sm[m,,,~,xB, L-l)]sln,n~r,)sm[n~r,,,.~,L=l] (76) 

I 

,L ,=1,=~ c0shl& .) 

For  a random walker arriving at r n =  (xs, YB, 4- 

L) in the z boundary  surface, WH is obtained as 

w£,x~, Ys, +-L) 
_ I ~ ~sinlmx,'21sin[mx,'2(xn,'L+-II]sin(*t~r,'21s~n[nz,"2(yB,,'L+-l)] (77) 

.L ,:z,:t c0sh,i kz,,,'.) 

The probabil i ty that the random walker land 

for the first t ime at any point  in the specific 

boundary  surface is obtained by integrating Eq. 

(75), (76) or  (77) over the corresponding range. 

For  example, the probabil i ty  to land at any point  

in the surface x = L ,  is given by 

This result confirms that the random walker lands 

at each surface with equal  probabi l i ty  of  1/6. 

3.2.2 R a n d o m  w a l k  in a h e t e r o g e n e o u s  s i tu -  

at ion 

Consider  the first passage region that is con- 

sisted of  two cubes of  different conductivit ies,  

neighboring in z-d i rec t ion .  The first passage re- 

gion consisting of  two neighboring cubes in x -  or 

. y -  directions can be treated similarly. Each cube 

has a volume L 3. The origin is again taken to be 
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the corner location in the center-cut t ing plane 

between two cubes. The center-cut t ing plane co- 

incides with the plane in which z----0, as depicted 

in Fig. 7. Let o1 and o'z be the conductivities of the 

cubes located at the positive and the negative 

sides along the z-axis,  respectively. A random 

walker starts to diffuse from a location r = (x, y, 

0). Using the separation of variables technique, 

one can solve the boundary  value problem, Eqs. 

(14)-(17)  to obta in  the mean hit t ing time r ( r ) .  

For  a random walker diffusing from an arbitrary 

location r =  (x, y, 0) and landing at some point 

r B = ( x m  Ym zz) in the outer boundary  of the 

first-passage bicube for the first time, the mean 

hitt ing time r ( r )  is obtained as 

2 
r :  - - r n  (79) 

0"1+ 0"2 

where rn denotes the homogeneous solut ion given 

by Eq. (74) for a unit  conductivity.  

The probabil i ty  density function w ( x ,  y,  O, 
XB, Ye, ze) in association with the walker 's dis- 

placement is given by the solut ion of the boun-  

dary value problem, Eqs. (18)- (21) .  This prob- 

lem can be solved and its solution is obtained as 

[ 261 WH(x, xB, ye, zj,  forzn>O 
=/0"t-- 62 Y' 

(8o) 

where wn is defined in Eq. (58) and its explicit 

expression is given as win, win, win, wu4, or wns 

in Eqs. (64) - (68) ,  depending on the posit ion of 

re. Note that wn is obtained as wm for re -= (x, ,  

Ye, +--L), wm for r e =  (0, ye, ze), wm for r e =  

(xe, O, ze), w.4 for r e =  (L, y~, ze), or wm for 

re  = (xe, L,  zB). 

The probabi l i ty  p~ that a random walker land 

for the first time at any point  along the right half  

oq~21 of the boundary  surface is obtained by in- 

tegrating Eq. (80) with Eqs. (64)-(68)  over o3Q1, 

i.e., 

p~= fo Lfo Lw(x, y, 0, XB. ys, L)dxsdyB+ fo zfo Lw(x, y, O, O, yB. z~)dy~dzB 

+ w(x,y,O, xB, O, zB)dxndzs+ w(x,y,O,L, yB, zB)dyBdzB 

+ fo f%lx , (8l) 

= fo L fo LwH~ (X, y, XB, yB) dxedyB + fo L fo Lw~ (x, Y, y~, zJ dyedz8 

+ fo Z f Z wm (x, y, xB. zB) dx~dzB + fo z fo 'u'u4 (x, y, y,, z,) dyBdz~ 

+ ~.s(x, y, x~. z~)dz~dz~ 

-6z+~ 

It follows that Pz for 0 Q 2 is obtained as 

a2 (82) ~ = l - - p a =  al + a2 

implying that the probabil i ty  Pi landing at Q i is 

propor t ional  to the local conductivi ty 0.i of  the 

corresponding cube. 

In case that a random walker happens to land 

exactly at or very close to a corner of a cubic 

voxel, the walker moves further by use of a first- 

passage cube, rather than a first-passage bicube. 

One constructs a first-passage region consisting 

of eight cubes encompassing the random walker 

at the corner, instead of two cubes. Consider  a 

random walker exactly at or very close to the 

origin that is taken at the center of eight cubes, 

as shown in Fig. 8. Each of eight cubes has a 

volume of L 3. Let o ' u ) ( i = l ,  2, " ' ,  8) be the 

conductivi ty of the cube at the i - th  octant. A 

random walker diffuses from the center and even- 

tually arrives at an outer boundary  of a region of 

eight cubes. The mean hit t ing time r in associa- 

t ion with this displacement are obtained as solu- 

tions of Eqs. ( 14)- (17). The solut ion is found to 

be 

1 0.22485L z 
(83) ~ ' : ~  - z ' H ~  (~ 

where 

l 8 . 
0.---- ~-/__~x 0 "(') (84) 

and rH is the mean hitt ing time taken for a ran- 

dom walkcr associatcd with the homogeneous 

first-passage region of a unit  conductivity,  as 

given in Eq. (73). The probabi l i ty  density func- 

tion w( r ,  rs)  associated with this first-passage 

displacement is given by the solution of the boun-  

dary value problem, Eqs. (18)- (21) .  Let cZQ (i) 

denote the section of the boundary  0 f2 belonging 
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in the i- th octant. For a random walker arriving 

at the boundary at Of~ <il, the probability density 

is obtained as 

0"(i) ~ ( i )  (85) w (r, r B ) =  wH (rs), r~ on 

where WH (r) is the probability density associated 

with the homogeneous first-passage region, as 

given in Eqs. (75), (76) and (77). The probabil- 

ity p that the random walker land for the first 

time at any point along the specific boundary side 

can be obtained by integrating (85) with the Eqs. 

(75), (76) and (77). 

4.  S i m u l a t i o n  D e t a i l s  

The effective conductivity o'e of a conductive 

medium is directly proportional to random wal- 

kers' mean square displacements (R2(t)) in their 

long-time limit t - - ,  co, regardless of the homo- 

geneity of the medium. In the computer simula- 

tion, one releases sufficiently many random 

walkers on the digitized medium and keeps track 

of their displacements for a sufficiently long time 

interval. First-passage time quantities considered 

in Sec. 3 are used in letting random walkers move 

around the medium in an efficient fashion. We 

describe some simulation details in the language 

of two dimensions for concreteness. Three dimen- 

sional problems are merely obvious extensions of 

two-dimensional problems. 

Consider a digitized medium that is consisted 

of square pixels of area L z. In order to sample 

the medium, one first chooses an initial location 

of a random walker such that this initial location 

is right at a boundary of a square pixel. In our 

new simulation method, a random walker always 

jumps from a pixel boundary to another pixel 

boundary, unlike in previous first-passage-time 

methods. Thus, at the beginning of each step, a 

random walker is at the inner boundary (or the 

centerline) of two adjacent squares, such as r in 

Fig. 1. These two neighboring squares are taken 

as a "first-passage-bisquare," or FPBS, in asso- 

ciation with the random walker's displacement. 

Let us assume that the FPBS is horizontally long, 

as in Fig. I. For the random walker's displacem- 

Copyright (C) 2003 NuriMedia Co., Ltd. 

ent in association with the vertically long FPBS, 

the following description can be applied by me- 

rely interchanging the horizontal and the vertical 

axes. The FPBS is either homogeneous or hetero- 

geneous, depending on the local geometry around 

the walker. We describe a random walker's dis- 

placement with a homogeneous FPBS and a he- 

terogeneous FPBS, separately. 

4.1 Random walker in a homogeneous situ- 
ation 

If a random walker is at the centerline of the 

homogeneous FPBS, then the walker jumps from 

the centerline to the outer boundary of the FPBS 

in one step. For the homogeneous FPBS with 

the conductivity ~y, this jump takes an average 

amount of time m/o-, where rn is given by Eq. 

(30). The probability density to land at a point 

on the outer boundary of  the FPBS is not uniform 

along the boundary, but symmetric about the 

centerline. One first chooses either one of  the two 

boundary sides, left or right, of the FPBS with 

equal probability of 1/2, and then picks up an 

arbitrary point at the chosen boundary side ac- 

cording to the probability distribution win, WH2, 

or WH3, given by Eqs. (35)-(37). The walker 

jumps to this point in one step. One repeats this 

FPBS jump, unless the walker gets too close to a 

corner of the FPBS or reaches at the interface 

boundary of two squares having different con- 

ductivities. 

If the random walker happens to land at a 

point right at or very close to the corner, the 

walker cannot move further by use of the FPBS, 

since it continues to stay there spending no time. 

In the computer simulation, one uses a simulation 

parameter ~ to avoid this. If a random walker is 

within the prescribed small distance 3 (that is 

typically less than 10 -8 of the pixel size) from the 

corner, one constructs a first-passage region con- 

sisted of four squares of area 4L z, instead of two 

squares of area 2L 2, in association with the 

walker's next jump. This jump takes an average 

amount of time "on~a, where rH is given by Eq. 

(41). One first chooses one of four outer boun- 

dary sides of the first-passage square with equal 

probability of 1/4 and then picks up an arbitrary 
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point at the chosen side according to the prob- 

ability distr ibut ion w~, given by Eqs. (42) and 

(43). The walker  jumps  to this point  in one step. 

4.2 Random walker in a heterogeneous situ- 
ation 

For  a random walker  at the interface boundary  

between two squares having different conduc- 

tivities, one constructs a first-passage region con- 

sisted of  these two heterogeneous squares, or a 

heterogeneous FPBS. The walker jumps  from the 

centerl ine to the outer  boundary  of  the hetero- 

geneous FPBS. For  the FPBS consisted of  squares 

of  the conduct ivi ty  oq at its posit ive x - s ide  and o'2 

at its negative x-s ide ,  this j u m p  takes an average 

amount of time r, as much as given by Eq. (45). 

The probabil i ty  density to land at a point  on the 

boundary  is not uniform along the boundary,  nor 

symmetric about  the centerline. One first chooses 

either one of  the two boundary  sides, left or right, 

of  the FPBS, with the probabi l i ty  i01 or P2, where 

Pl and /)2 are given in Eqs. (81) and (82), res- 

pectively. Note  that this landing probabi l i ty  is 

propor t iona l  to the local conductivity,  or iO~ di. 

One then picks up an arbitrary point  at the chosen 

boundary  according to the probabi l i ty  distributi- 

on wH, given by Eq. (46). The  walker jumps  to 

this point  in one step. 

If  the random walker  happens to land at a 

point right at or  very close to the corner (within 

c~) and four squares about  the corner  are not 
homogeneous,  then one needs to use the first- 

passage square of  area 4 L  2, instead of  the FPBS 

of area 2 L  ~. Fo r  the first-passage region consisted 

of  four squares having conductivit ies d u) at its 

i th quadrant ,  this j u m p  takes an average amount  

of  time r, as much as given by Eq. (49). One first 

chooses the boundary  side of  the first-passage 

square of  area 4L  2 with the probabi l i ty  propor-  

t ional  to the local conduct ivi ty  and then picks up 

an arbitrary point at the chosen boundary  ac- 

cording to the probabi l i ty  distr ibution w, given 

by Eq. (5 l ) .  The walker  jumps  to this point  in 
one step. 

At each step, the squared displacement is re- 

corded as a function of  time. By repeated use of  

homogeneous  or heterogeneous first-passage bis- 
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Fig. 9 Brownian walker makes an initial jump of 

distance /71 to the boundary of the first-pas- 

sage bisquare. It crosses the two-phase inter- 

face for the first time in the i- th jump and 

reaches the sample boundary at the N- th  

jump 

quares of  area 2L 2 (and first-passage squares of  

area 4L2), one can let the random walker con- 

tinue to displace in the digitized medium as long 

as needed. Fig. 9 conceptual ly  demonstrates how 

the FPBS's  are used in the random walker 's  dis- 

placement. An ensemble mean is obtained over 

sufficiently many walkers '  displacements for suf- 

ficiently long times. The effective conduct ivi ty  de 

for a part icular  configurat ion of  the digitized 

medium is tr ivially related to the slope of  the 

mean square displacement versus time, as given in 
Eq. (1). For  disordered media, one should av- 

erage over sufficiently many configurations.  

5. S i m u l a t i o n  R e s u l t s  a n d  

D i s c u s s i o n s  

In order to illustrate the efficiency of  the new 

algori thm, we carried out computer  s imulat ions 

to compute  the effective conduct ivi ty  de of  two-  

dimensional  digitized heterogeneous media. We 

first considered the periodic and then the random 

checkerboards.  Representative configurat ions of  

both checkerboards are shown in Fig. 10. In the 

following, we use the notat ion that black squares 

belong to the more conduct ing phase, or phase 2, 

of  which the conduct ivi ty  is o'2 and the volume 

fraction is ¢2. The less conduct ing phase, or phase 

1, is denoted by white squares with its conduc- 

tivity o1 and volume fraction q$~. 
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Table 1 

In Chan Kim 

Simulation results and the computation times for two different first passage-time methods. Sim- 
ulations were carried out to obtain the effective conductivity o'e of two dimensional periodic 
checkerboard type heterogeneous media, in which black (phase 2) and white (phase 1) square pixels 
are alternately located such that the volume fraction of each phase is equal, i.e., ~b~=~bz=0.5. Included 
in the Table the theoretical values given by the phase interchange theorem. Computat ion times were 

measured in 1.7 GHz machine 

New method FPS method Theoretical 

~z/~71 6e/gt CPU minutes de/dr CPU minutes O'e/O'l 

4 
9 

16 
25 
36 
49 
64 
81 
100 

2.0 
3.1 
4.1 
5.2 
6.2 
7.2 
8.2 
9.2 
10.1 

2 
3 
6 
9 
13 
17 
22 
28 
34 

2.0 
3.0 
4.0 
5.0 
6.0 
7.0 
8.0 
9.0 
10.0 

17 
34 
58 
89 
127 
171 
223 
281 
345 

2.0 
3.0 
4.0 
5.0 
6.0 
7.0 
8.0 
9.0 
10.0 

Fig. 10 

(a) (b) 

(a) Portion of a periodic checkerboard in which ~bl=~b2=0.5. (b) Portion of a random checkerboard 

in which ~bl = ~b2=0.5. 

5.1 Periodic checkerboard 
In the digi t ized med ium of  the per iod ic  chec- 

ke rboard ,  as s h o w n  in Fig. 10(a) ,  the vo lume  

fract ions  of  bo th  phases  are equal ,  i.e, q~l=~b2= 

0.5. The  p rob l em of  de t e rmin ing  the effective 

conduc t iv i ty  O'e of  this  c h e c k e r b o a r d - t y p e  hetero-  

geneous med ium can be exactly solved by using 

Keller 's  phase  change  theorem 9 and  the so lu t ion  is 

given by 

Copyright (C) 2003 NuriMedia Co., Ltd. 

O ' e = ~  (86) 

Egua t ion  (86) appears  simple.  However ,  this  

b e n c h m a r k  p rob lem is one of  the most  severe tests 

of  a compu te r  s imula t ion  a lgo r i thm for modera te  

to h igh  conduc t iv i ty  ra t io  o'2/~1. We  solved this  

p rob lem for o'2/o'1 r ang ing  from 1 to 100, first by 

using the new s imula t ion  me thod  and  then  the 

f i r s t -passage  square  (FPS)  method.  For  the sim- 
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ulation, we used 100,000 random walkers. Each 

walker has been al lowed to travel for the total 

time of  tmax=5L 2 and ~ was taken to be 10-~°L, 

where L is the size of  the unit square. The 

simulat ion results are summarized in Table  1, 

where the computa t ion  times are also shown for 

comparison.  It is evident that both methods yield 

virtually exact results but the new algori thm 

spends the computa t ion  time as much as about  an 

order of  magni tude smaller than that of  FPS 

method. 

5.2 R a n d o m  c h e c k e r b o a r d  

In the digitized medium of  the random checker- 

board, as shown in Fig. 10(b), the square pixels 

of  conductivi t ies  crt and 0"2 are randomly blended. 

For  the random checkerboard,  we considered 

three different vo lume fractions : q~z=0.3. 0.5 and 

0.7 and conduct ivi ty  ratios o'2/o'1 ranging from I 

to 100. We compared  again our s imulat ion results 

to the theoretical  values given by Keller 's  phase 

interchange t heo rem)  The theorem states that, for 

two-d imens iona l ,  two-phase ,  isotropic, compo-  

site media, 

ae(a~, a2)ae(a2, a~)=a~a2 (87) 

where 0"e(o'h ~rz) and o'e(62, o"1) are the effective 

conductivit ies of  composi te  media in which the 

phases are interchanged from each other. 

For  the case of  ~b2=0.5, we carried out com- 

puter s imulat ions using new method and FPS 

method. We first generated 10 different configura-  

tions of  infinite size, which are replicating blocks 

of  100× 100 squares. At each configurat ion.  100, 

000 walkers were released. Each walker has freely 

traveled for the total t ime of  tm~x=20L 2, where L 

is the size of  the unit square. The simulat ion 

parameter ~ was taken to be 10-SL. The simula- 

tion results are summarized in Table  2, where the 

computa t ion  times are also shown for compari-  

son. One can see that, as in the periodic checker- 

board, both methods yield virtually exact results 

but the new algori thm spends the computat ion 

time as much as about  an order of  magni tude 

smaller than that of  FPS method. Table  2 also 

shows the theoretical result given by Keller 's 

phase change theorem. The theorem states that. 

for this particular case of  ~bx=~bz=0.5, o'_~ is given 

again by the Eq. (86). 

For  the case of  q~z=0.3 and 0.7, we carried out 

computer  s imulat ions using the new method. The 

simulat ion results are summarized in Table  3. 

We also include the quanti ty O'e(~2=0.3)°O'e 
(~bz=0.7) in the Table,  in order  to compare  to 

Keller 's  phase change theorem, Eq. (87), which 

gives, for this part icular  case, 

6e (q52=0.3) • O'e(~bz=0.7) = d ,  dz (88) 

Table 2 Simulation results and the computation times for two different first-passage time methods. 
Simulations were carried out to obtain the effective conductivity 6e of two dimensional random 
checkerboard-type heterogeneous media, in which black (phase 2) and white (phase I) square pixels 
are randomly blended such that the volume fraction of" each phase is equal, i.e., ~bl = ~bz=0.5. Included 
in the Table the theoretical wdues given by the phase interchange theorem. Computation times were 
measured in 1.7 GHz machine 

New method FPS method Theoretical 

62/05 6e,/O't CPU minutes tYe/Gt CPU minutes O'e/'O'~ 

1 
4 
9 
16 
25 
36 
49 
64 
81 
I00 

1.0 2 
2.0 5 
3.0 11 
4.0 18 
5.0 28 
6.0 39 
7.0 53 
8.0 68 
9.0 86 
10.0 106 

1.0 19 
2.0 48 
3.0 98 
4.0 162 
5.0 248 
6.0 353 
7.0 477 
8.0 621 
9.0 784 
10.0 966 

1.0 
2.0 
3.0 
4.0 
5.0 
6.0 
7.0 
8.0 
9.0 
10.0 
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"Fable 3 

h7 Chan  K im  

Comparison of simulation results for the quantity (/e(ff2=0.3) o¥(ff2=0.7) and (/~(/2, 
of (/z/(/~ 

for various values 

(/2//(/1 

4 
9 
16 
25 
36 
49 
64 
81 
100 

(/~ ( , / ,2=0.3)/a ,  

1.5 
1.9 
2.1 
2.3 
2.5 
2.6 
2.7 
2.8 
2.9 j 

(/e ( ~2 =0.7) /a~ 

2.7 
4.9 
7.7 
II.0 
14.9 
19.2 
24.1 
29.4 
35.1 

ae( ~,.~ = 0.31 e .  ( ¢2 = 0 . 7 i / ~  

4.0 
9.1 
16.3 
25.4 
36.7 
49.8 
64.6 
81.6 
100.3 

One can see from the Table  3, the s imulat ion 

results of  ~ye(~b=0.3)'ae(~b=0.7) are very close 

to o"1o'2, with the maximum error less than 2 per 

cents, confi rming again the exactness of  the new 

method. 

We have also compared our results with the 

four point Milton bounds, 1° which is the most 

r igorous bounds for the cases of  two-d imens iona l  

heterogeneous media considered in this paper. We 

note that all of  our s imulat ion results lie within 

the lower and the upper bounds. 

6. Summary 

We have considered the problern of  computa-  

t ionally determining the effective conductivi ty of  

random heterogeneous digitized media. The digi- 

t ization simplifies the usually complex configura-  

tion of  a random heterogeneous medium into a 

readily accessible one by use of  geometrical ly 

identical pieces, such as square pixels in a two 

dimensional  application.  The simplified configu- 

ration of  the digitized medium typically contains 

sharp edges or corners. As the configurat ion be- 

comes more random and the contrast between the 

phase conductivit ies becomes larger, the conduc- 

tive transport through touching corners becomes 

more important.  In order for a computa t ion  me- 

thod to be successfully applicable,  the method 

should be able to correctly capture this conduc- 

tive transport through touching corners. The  

first passage-t ime lbrmulat ion by Torqua to  et al., 

which addresses a Brownian motion simulat ion 

technique, provides a theoretical basis by which 
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one can devise a computa t ion  method having the 

desired capabil i ty to correctly capture the conduc-  

tive transport through touching corners. Indeed, 

they developed a computa t ion  method that makes 

use of  the square-shaped first-passage region, 

or the first-passage square, for a two-d imen-  

sional application,  and the cube-shaped  first- 

passage region, or the first-passage cube, for a 

three-d imensional  application.  To  the author 's  

knowledge, this is the only existing computa t ion  

method by which one can exactly simulate the 

conduct ive transport  through touching corners. 

In this study, we have developed a more efficient 

version of  the f i rs t -passage- t ime method that 

makes use of  the first-passage region consisted of  

two digit izing units, or the first-passage bisquare 

and the first-passage bicube for a two or three- 

dimensional  application.  The new method speeds 

up the Brownian walkers traveling in the com- 

posite medium and consequently results in the 

reduced computa t ion  time to compute  the effec- 

tive conduct ivi ty  of  the medium. For  the illus- 

tration, we have considered the problem of  deter- 

mining the effective conductivi t ies  of  the two-  

dimensional  checkerboard- type  heterogeneous 

media, first for the periodic and then for the ran- 

dom configurations.  We computed the effective 

conductivit ies using both the first-passage square 

and the first-passage bisquare methods, for the 

wide range of  conduct ivi ty  ratios and volume 

fractions. For  the periodic checkerboard,  where 

the exact theoretical value is given by the phase 

interchange theorem, both methods gave vir tually 

exact rest, Its while the proposed new method 
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saved the computation time by about an order of 

magnitude. For  the random checkerboard, where 

the relation between the conductivities at two 

different volume fractions is given by the phase 

interchange theorem, both methods gave virtually 

identical results while the proposed new method 

saved the computation time by about an order of 

magnitude. 
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